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Abstract

Rational verification is the problem of determining which
temporal logic properties will hold in a multi-agent system,
under the assumption that agents in the system act rationally,
by choosing strategies that collectively form a game-theoretic
equilibrium. Previous work in this area has largely focussed
on deterministic systems. In this paper, we develop the the-
ory and algorithms for rational verification in probabilistic
systems. We focus on concurrent stochastic games (CSGs),
which can be used to model uncertainty and randomness in
complex multi-agent environments. We study the rational
verification problem for both non-cooperative games and co-
operative games in the qualitative probabilistic setting. In the
former case, we consider LTL properties satisfied by the Nash
equilibria of the game and in the latter case LTL properties
satisfied by the core. In both cases, we show that the problem
is 2EXPTIME-complete, thus not harder than the much sim-
pler verification problem of model checking LTL properties
of systems modelled as Markov decision processes (MDPs).

1 Introduction
Rational verification is the problem of determining which
temporal logic properties will hold in a multi-agent system,
under the assumption that agents in the system act rationally,
by choosing strategies/policies for acting which collectively
form a game-theoretic equilibrium (Gutierrez, Harrenstein,
and Wooldridge 2017; Wooldridge et al. 2016). Rational
verification has been studied for a range of models: typi-
cally, each agent is modelled as a non-deterministic reac-
tive program, where non-determinism captures the choices
available to each agent at each time step – the strategies
available to a player correspond to each possible way that
an agent can resolve its non-determinism. To be able to rea-
son about game-theoretic equilibria, the model also needs
to capture the preferences that players have, and a common
approach for this is to associate with each agent a tempo-
ral logic “goal” formula that the player desires to be sat-
isfied. For example, in the Reactive Modules reasoning
framework, agents are modelled using the Reactive Modules
language (Alur and Henzinger 1999), and agent preferences
are modelled with goals expressed in linear temporal logic
(LTL) (Gutierrez et al. 2020; Gutierrez et al. 2018).

The most basic decision problem in rational verification
is as follows: Given a system M , and a temporal logic for-

mula ϕ, does there exist a Nash equilibrium profile of strate-
gies ~σ = (σ1, . . . , σn) for the players in M such that ϕ will
be satisfied under the assumption that players act according
to ~σ. This decision problem is known as E-NASH, and is
2EXPTIME-complete for Reactive Modules games (Gutier-
rez, Harrenstein, and Wooldridge 2017); the corresponding
A-NASH problem asks, instead, whether formula ϕ holds
for all Nash equilibrium profiles in the game.

Although many models have been studied in the context
of rational verification, little research has considered proba-
bilistic models, and as such, existing models are limited in
the scope of domains they can capture. Our aim in this pa-
per is to rectify this omission: we study rational verification
in probabilistic systems in which players have goals repre-
sented by LTL formulae. Our basic model is called con-
current stochastic games (CSGs), sometimes also referred
to as Markov games. As in conventional concurrent games,
a game is played over an infinite sequence of rounds, and
at each round, every player chooses an action to perform.
Unlike conventional concurrent games, however, the perfor-
mance of a profile of actions does not induce a unique suc-
cessor state, but rather a probability distribution over possi-
ble successor states. The main difference between the games
we study and standard CSGs is that player preferences in
our setting are defined by associating LTL goals γi with each
player i. The game is played by each player choosing a strat-
egy (cf. policy), which defines how that player will make
choices over time when playing the game.

In common with previous work, we model strategies as
state machines with output (although we may require them
to have infinite memory), though strategies in our setting are
not required to choose a unique action at every time step,
but instead choose a probability distribution over possible
actions. A CSG together with a profile of strategies induces
a Markov chain (MC), and given such an MC, we can de-
termine the probability of given temporal formulae being
satisfied, and in particular, the probability with which goal
formulae γi are satisfied. In this paper, we consider rational
verification of CSGs in the qualitative setting, i.e., where we
are interested in checking if the probability of satisfying LTL
goals is 1 or greater than 0. These are also known as almost-
sure (AS) and non-zero (NZ) satisfaction respectively, which
– together with their negated formulations, probability less
than 1 or equal to 0 – form one of the most useful settings



in probabilistic verification (Baier and Katoen 2008). For
example, they can be used to capture interesting liveness
properties for many randomised protocols (Norman 2004;
Lehmann and Rabin 1981; Lengál et al. 2017; Lin and
Rümmer 2016).

Against this background, we study the rational verifi-
cation problem for both cooperative and non-cooperative
solution concepts. In the non-cooperative case, we fo-
cus on Nash equilibria, and characterise the complexity of
the E-NASH and A-NASH problems, together with related
problems. We then investigate cooperative solution con-
cepts, adapting the model of the core that was introduced
by (Gutierrez, Kraus, and Wooldridge 2019), which defines
strategy profiles that are stable against beneficial deviations
by groups of players (coalitions), as opposed to individual
deviations in the case of Nash equilibria. We consider E-
CORE, A-CORE, and related decision problems – which in
previous work have been studied only for concurrent multi-
agent systems without any probabilistic behaviour.

To the best of our knowledge, this is the first work that
considers the rational verification problem for probabilis-
tic systems in which games can be cooperative or non-
cooperative, players’ preferences can be expressed using
general LTL goals, strategies may have access to infinite
memory, interactions can take place concurrently, and plays
may last for an infinite number of rounds (i.e., have an in-
finite horizon). All previous work, in the probabilistic set-
ting, fails to have at least one of these features arising in full
interplay with the others, making our framework the most
complex so far developed from a theoretical point of view.
Indeed, because of the many features we consider together,
several new constructions and proof techniques are required
to be able to fully account for probabilistic behaviour.

Structure of the paper In Section 2, the necessary back-
ground is given. Sections 3 and 4 contain the main technical
results for non-cooperative games and cooperative games re-
spectively. Then, in Section 5, we present some concluding
remarks and a summary of relevant related work.

2 Preliminaries
For a finite setX , a (rational) probability distribution overX
is a function Pr : X → [0, 1]∩Q such that Σx∈X Pr(x) = 1.
We write D(X) for the set of probability distributions on X ,
and spt(Pr) = {x ∈ X : Pr(x) > 0} for the support of
the distribution Pr on X . For a tuple ~x = (x1, . . . , xn),
we write proji(~x) = xi, i.e., its i-th projection, and also
projxi(~x) = xi when the context is clear.

Markov chains A (discrete time) Markov chain (MC) is
a tuple C = (S, sι, tr, λ), where S is a set of states, sι is
the initial state, tr : S → D(S) is a function that assigns a
probability distribution (on the set of states S) to all states
s ∈ S, and λ : S → 2AP is a labelling function mapping
each state to a set of propositions taken from the set AP.

The set of infinite paths in C starting from s ∈ S is
Paths(C, s) = {π = s0s1 · · · ∈ Stω : s0 = s,∀k ∈
N. tr(sk, sk+1) > 0}. The set of all infinite paths in C
is Paths(C) =

⋃
s∈S Paths(C, s). The set of finite paths

starting from s ∈ S is defined as Fpaths(C, s) = {π̂ =
s0 · · · sn ∈ S+ : ∃π ∈ Paths(C). π̂π ∈ Paths(C, s)} and
Fpaths(C) =

⋃
s∈S Fpaths(C, s). The cylinder set of a fi-

nite path π̂ ∈ Fpaths(C) is defined by Cyl(π̂) = {π ∈
Paths(C) : ∃π̃ ∈ Paths(C). π = π̂π̃ ∈ Paths(C)}. Follow-
ing (Vardi 1985), we define the probability distribution over
the space of infinite paths, as usual, via cylinder sets. We
denote this probability distribution over the set of infinite
paths beginning from some state s by PrsC . We also write
PrC when s is clear from the context.

Concurrent stochastic game arenas A concur-
rent stochastic game arena (CSGA) is a tuple
M = (N,St, s0, (Aci)i∈N, tr), where N is a finite set of
players, St is a finite set of states, s0 is the initial state, Aci
is a finite set of actions for each i ∈ N. With each player i
and each state s ∈ St, we associate a non-empty set Aci(s)
of available actions that, intuitively, i can perform when in
state s. When all players have fixed their actions, we have
an action profile ~a = (a1, . . . , an) ∈ ~Ac = Ac1×· · ·×Acn
which we refer as as a direction. A direction ~a is available
in state s if for all i we have ai ∈ Aci(s). We write ~Ac(s)
for the set of available directions in state s.

For a given set of players A ⊆ N and an action profile ~a,
we let~aA and~a−A be two tuples of actions, respectively, one
for each player in A and one for each player in N \ A. Fur-
thermore, for two directions ~a and ~a′, we write (~aA,~a

′
−A) to

denote the direction where the actions for players in A are
taken from ~a and the actions for players in N \ A are taken
from~a′. Finally, tr : St× ~Ac→ D(St) is a probabilistic tran-
sition function. A Markov decision process (MDP), without
a reward function, is simply a CSGA with one player only.

Linear temporal logic LTL (Pnueli 1977) extends classi-
cal propositional logic with two operators, X (“next”) and
U (“until”), which can be used to express properties of
paths. The syntax of LTL is defined with respect to a set
AP of propositional variables by the following grammar:

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

where p ∈ AP. Other connectives are defined in terms of
¬ and ∨ in the usual way. Two key derived LTL operators
are F (“eventually”) and G (“always”), which are defined in
terms of U as follows: Fϕ ≡ >Uϕ and Gϕ ≡ ¬F¬ϕ.

We interpret formulae of LTL with respect to triples
(π, t, λ), where π ∈ Stω is a path, t ∈ N is a temporal index
into π, and λ : St → 2AP is a labelling function that in-
dicates which propositional variables are true in every state.
The semantics of LTL is given by the following rules:

(π, t, λ) |= >
(π, t, λ) |= p iff p ∈ λ(πt)
(π, t, λ) |= ¬ϕ iff it is not the case that (π, t, λ) |= ϕ
(π, t, λ) |= ϕ ∨ ψ iff (π, t, λ) |= ϕ or (π, t, λ) |= ψ
(π, t, λ) |= Xϕ iff (π, t+ 1, λ) |= ϕ
(π, t, λ) |= ϕUψ iff for some t′ ≥ t :

(
(π, t′, λ) |= ψ and

for all t ≤ t′′ < t′ : (π, t′′, λ) |= ϕ
)

If (π, 0, λ) |= ϕ, we write π |= ϕ and say that π satisfies ϕ.



Concurrent stochastic games A concurrent stochastic
game (CSG) is a tuple G = (M, (γi)i∈N, λ), where M is
a CSGA, γi is a LTL formula that represents the goal of
player i, and λ : St → 2AP a labelling function. A game is
played by each player i selecting a strategy σi that defines
how it makes choices over time. A strategy for player i can
be understood as a function σi : St+ → D(Aci) that assigns
to every non-empty finite sequence of states a probability
distribution over player i’s set of actions. In general, strate-
gies require memory to remember the history of the game.
When a strategy remembers a finite amount of information
about the past we call it finite-memory, and when each dis-
tribution σi(s+) is deterministic we call σi pure.

Formally, a strategy in G for player i is a a transducer
σi = (Qi, q

0
i , δi, τi), where Qi is a (possibly infinite) set of

internal states, q0i is the initial state, δi : Qi × St→ Qi is a
deterministic internal transition function, and τi : Qi×St→
D(Aci) an action function that selects a distribution on Aci
such that for all qi ∈ Qi and s ∈ St, we have τi(qi, s) ∈
D(Aci(s)). Let Σi be the set of strategies for player i. A
strategy is memoryless if there exists a transducer encoding
the strategy with |Qi| = 1, i.e., the choice of action only
depends on the current state of the game, and finite-memory
if |Qi| <∞. Moreover, a strategy is said to be deterministic
if τi : Qi×St→ Aci, such that for every qi ∈ Qi and every
s ∈ St, we have that τi(qi, s) ∈ Aci(s).

Once every player i has selected a strategy σi, we have a
strategy profile ~σ = (σ1, . . . , σn). We write ~σA and ~σ−A to
denote the strategy profile for players in A ⊆ N and N \ A,
respectively. We also write (~σA, ~σ

′
−A) to denote the strategy

profile where the strategies for players in A are taken from
~σ, and the strategies for players in N \ A are taken from ~σ′.
Observe that a strategy profile ~σ for a game G resolves non-
determinism in the underlyingM. That is, a strategy profile
~σ for a game G induces an MC C~σ = (S, sι, tr

′, λ), where
S = St ××i∈NQi, sι = (s0, q01 , . . . , q

0
n), and for v, v′ ∈

S, tr′(v, v′) =
∑
~a∈ ~Ac

∏
~ai∈~a τi(projqi(v), projs(v),~ai) ·

tr(projs(v),~a, projs(v
′)), if for each i ∈ N, projqi(v

′) =
δi(projqi(v), projs(v)), and is not defined otherwise.

Automata A deterministic automaton on infinite words is
given by a structure A = (AP, Q, q0, ρ,F), where Q is a
finite set of states, ρ : Q×AP→ Q is a transition function,
q0 is an initial state, and F is an acceptance condition. A
parity condition F is a partition {F1, . . . , Fn} of Q, where
n is the index of the parity condition and any k ∈ [1, n] is a
priority. We use a priority function α : Q → N that maps
states to priorities such that α(q) = k if and only if q ∈ Fk.
For a run π = q0q1q2 . . . , let inf (π) denote the set of states
occurring infinitely often in the run inf (π) = {q ∈ Q : q =
qi for infinitely many i’s}. A run π is accepted by a deter-
ministic parity word (DPW) automaton with condition F if
the minimum priority that occurs infinitely often is even, i.e.,
if
(
mink∈[1,n](inf (π) ∩ Fk 6= ∅)

)
mod 2 = 0.

For a given game G and a strategy profile ~σ, a formula ϕ
is said to be almost-surely satisfied, denoted ~σ |= AS(ϕ),
if and only if, PrC~σ ({π ∈ Paths(C~σ, s0) : π |= ϕ}) = 1.
Similarly, we say that ϕ is satisfied with non-zero proba-
bility, denoted ~σ |= NZ(ϕ) if PrC~σ ({π ∈ Paths(C~σ, s0) :

π |= ϕ}) > 0. Observe that NZ can be viewed as the
dual of AS, written (with a slight abuse of notation) as
NZ(ϕ) ≡ ¬AS(¬ϕ). Hence, for ease of exposition, in the
remainder of the paper we focus on AS winning conditions,
with the understanding that all our results from this case can
be also used in the case of NZ winning conditions, and their
respective negated formulations.

A concurrent multiplayer stochastic parity game (CSPG)
is given by a structure GPAR = (M, (αi)i∈N) where αi :
St → N is the goal of player i, given as a priority function
over the set of states St. A path π satisfies a priority function
α, denoted by π |= α, if the minimum number occuring in-
finitely often in the infinite sequence α(π0)α(π1)α(π2) . . .
is even. Almost-surely satisfaction in CSPGs is then defined
in a similar way: we say that ~σ |= AS(α) if and only if
PrC~σ ({π ∈ Paths(C~σ, s0) : π |= α}) = 1.

For a CSG G, strategy profile ~σ, and state s, we define the
set of winners and losers by WG(~σ, s) = {i ∈ N : (~σ, s) |=
AS(γi)} and LG(~σ, s) = {i ∈ N : (~σ, s) |= ¬AS(γi)}. We
also write WG(~σ) and LG(~σ), for WG(~σ, s0) and LG(~σ, s0).
We define the above concepts for CSPGs analogously, with
GPAR replacing G and αi replacing γi.

3 Non-Cooperative Rational Verification
We now introduce rational verification problems involving
non-cooperative solution concepts – and in particular, prob-
lems relating to Nash equilibria (Osborne and Rubinstein
1994). We begin by defining this concept for our setting:
Given a game G, a strategy profile ~σ is a Nash equilibrium
of G if, for every player i and strategy σ′i ∈ Σi, we have

(~σ−i, σ
′
i) |= AS(γi) implies ~σ |= AS(γi)

where (~σ−i, σ
′
i) denotes (σ1, . . . , σi−1, σ

′
i, σi+1, . . . , σn),

the strategy profile where the strategy of player i in ~σ is
replaced by σ′i. Note that this is equivalent to a more tra-
ditional formulation in which the utility function of each
player i is defined as equal to a constant a if AS(γi) holds
and equal to a constant b < a otherwise. Let NE(G) denote
the set of Nash equilibria of G. We begin by introducing the
key rational verification problems for non-cooperative set-
tings; these are the natural adaptation of rational verification
for the almost-sure setting.

MEMBERSHIP
Given: Game G, strategy profile ~σ.
Question: Is it the case that ~σ ∈ NE(G)?

E-NASH
Given: Game G, LTL formula ϕ.
Question: Is it the case that ∃~σ ∈ NE(G). ~σ |= AS(ϕ)?

We can also ask the obvious counterpart of E-NASH:

A-NASH
Given: Game G, LTL formula ϕ.
Question: Is it the case that ∀~σ ∈ NE(G). ~σ |= AS(ϕ)?

The intuitively simpler question of asking whether a
game G has any Nash equilibria, typically known as NON-
EMPTINESS in the rational verification literature, can be
solved simply by checking if (G,>) ∈ E-NASH. Note that
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Figure 1: The CSGA for Examples 1 and 2. Edges without probability labels mean they have probability 1, and edges labelled ? are executed
if the action profile is not equal to cS , cR.

the question of NON-EMPTINESS may be non-trivial, as the
fact that in our setting strategies can have infinite memory
(and thus there are infinitely many of them) means we can-
not straightforwardly apply Nash’s theorem.

To illustrate some of the concepts introduced above, we
will make use of the following example.

Example 1. Suppose we have a sender and a receiver who
want to transmit some data. The sender and the receiver
can be in either of two modes: idle or communicating. The
data is sent sequentially in n blocks and successful trans-
mission is assumed to be continuous, i.e., no gaps (missing
blocks) are allowed between blocks; if there are gaps, the
transmission fails and has to be restarted from the begin-
ning. In order to be able to send the data, both sender and
receiver have to be in the communicating mode. Further-
more, suppose that the network is noisy, thus for each block
being transmitted, it may be lost with probability p.

To capture this, consider a game with N = {S,R} rep-
resenting the sender S and receiver R. The set of actions
for player j ∈ N is Acj = {cj , ij}, where cj and ij mean
that player j is communicating or idle, respectively. The
arena of the game is shown in Figure 1. Being in state si
indicates that i blocks have been successfully transmitted,
with sn forming a sink state. The goal of each player j is to
almost-surely satisfy γj = Fψ.

There are infinitely many Nash equilibria in this game.
However they can be classified into two categories: (a) those
that satisfy the goals of each player; and (b) those that do
not. For category (a), observe that any strategy profile that
prescribes the action cj for each player j with probability
strictly greater than zero in every state s ∈ {s0, . . . , sn−1}
is a Nash equilibrium. For (b), any strategy profile that pre-
scribes ij with probability one for each player j in any state
s ∈ {s0, . . . , sn−1} is also a Nash equilibrium.

Thus, the answer E-NASH with ϕ ≡ Fψ (i.e., the data
is eventually sent) is “yes”, since there exist Nash equilib-

ria that satisfy ϕ with probability one, namely, the strategy
profiles that belong to category (a). On the other hand, the
answer to the A-NASH query with the same property ϕ is
“no”, since we have equilibria that belong to category (b).

Similar, but more realistic, versions of Example 1 can
be constructed. For example, consider a distributed sys-
tem with n servers {Si}0≤i≤n, each of which has a mes-
sage inbox (a FIFO queue channel) that can contain up to k
messages. Each server Si can send a message m to another
server Sj , where m ∈ Σ for some finite Σ. This happens
instantaneously in that m is placed on the FIFO channel of
the receiver, although with a probability p ∈ (0, 1) that this
fails. We denote this action by snd(i, j,m). Each server can
also opt to perform two other actions: pop the first message
in the inbox (denoted by pop(j, i,m), meaning that Sj pops
message m sent by Si), or remain idle. In addition, we re-
quire that each server must pop a message when the inbox
is full. The system operates fully concurrently: each server
acts completely independently of each other.

The goal of each server Si is

γi =
∧
j,m

G(snd(i, j,m)→ Fpop(j, i,m));

namely, each message that is sent has to be eventually re-
ceived. It is not difficult to show that given the property
ϕ =

∧n
i=1 γi, both E-NASH and A-NASH queries return

“yes” answers. This is because a server Si that has sent
a message m to server Sj can resend the message, until it
knows that the message has been popped by Sj , thus forcing
the LTL goal to be satisfied almost surely.

The above system is an example of a so-called stochastic
lossy channel system (Abdulla et al. 2008; Baier, Bertrand,
and Schnoebelen 2007), but restricted to bounded chan-
nels, which is reasonable in practice, wherein memories are
bounded. Of course, communicating systems that employ
channels are quite realistic in practice (as in, e.g., the Erlang



programming language), and handling the possibility of a
message loss is important in the study of large communicat-
ing and distributed computer systems in general.

In the remainder of the paper, it will be useful to some-
times consider a two-player zero-sum variant of an existing
game in which the set of players is partitioned into two coali-
tions, A ⊆ N and N \ A. In the case of LTL objectives then
A has goal ψ and N \ A has goal ¬ψ, and for parity objec-
tives A has even parity for priority function α : St→ N and
N \A odd parity. We define this formally as follows.

Definition 1. Let G = (M, (γi)i∈N, λ) be a CSG whose un-
derlying arena isM = (N, (Aci)i∈N,St, s0, tr) and letA ⊆
N. Then the two-player coalition game arena is defined as
MA = ((1, 2), (×i∈AAci,×i∈N\AAci),St, s0, trA) where
trA(s, (a1, a2)) = tr(s, (~aA,~a−A)). The two-player LTL
coalition game with respect to G, A, and LTL formula ψ,
is thus defined as GA,ψ = (MA, (ψ,¬ψ), λ), and the two-
player parity coalition game with respect to G, A, and pri-
ority function α, is defined as GA,α = (MA, (α, ᾱ)) where
ᾱ(s) = α(s) + 1 for any state s ∈ St.

In the remaining subsections we address the three main
decision problems considered in the non-cooperative setting.

3.1 MEMBERSHIP

Recall that the MEMBERSHIP problem requires two inputs:
a game G and a strategy profile ~σ. We then ask if ~σ forms a
Nash equilibrium. Note that, in general, infinite memory
strategies are needed to play concurrent ω-regular games
with almost-sure winning conditions (Chatterjee and Hen-
zinger 2012), however for this problem we assume that the
input ~σ is represented by some finite state transducer. An
optimal procedure for solving MEMBERSHIP is given by Al-
gorithm 1, as shown by the following theorem.

Theorem 1. MEMBERSHIP is 2EXPTIME-complete.

Proof. Observe that checking line 2 of Algorithm 1 amounts
to (qualitative) model checking of the LTL formula γi on
the resulting MC C~σ , that is, after non-determinism in M
is resolved by ~σ. This step can be done in PSPACE (Cour-
coubetis and Yannakakis 1995). Checking line 3 amounts to
LTL model checking on the CSGAM~σ−i , i.e., model check-
ing LTL over MDP, which is 2EXPTIME-complete (Cour-
coubetis and Yannakakis 1995). Therefore, we have a
2EXPTIME procedure for solving MEMBERSHIP.

For hardness, we reduce from qualitative LTL model
checking on MDPs. Given an MDP K with labelling func-
tion λ and an LTL formula ϕ, we build a corresponding
MEMBERSHIP instance (G, ~σ) as follows. G = (M, γ1, λ

′)
is a CSG, where γ1 = X(ϕ∧p) and p is a fresh variable. The
CSGA M = (N,St, s0, (Aci)i∈N, tr) is built from K with
only a single player, two additional states, and two fresh ad-
ditional actions. Formally, N = {1}, St = S ∪ {s∞, s0},
Ac1 = Ac ∪ {a, ā}, and

tr(s, a) =


s∞, if (s, a1) = (s0, a) or s = s∞
sι, if (s, a1) = (s0, ā)

Pr(s, a), otherwise.

Algorithm 1 MEMBERSHIP

input: G, ~σ
1: for i ∈ N do
2: if ~σ 6|= AS(γi) then
3: if ∃σ′i ∈ Σi s.t. (~σ−i, σ

′
i) |= AS(γi) then

4: return “no”
5: return “yes”

s0

∅

s∞

∅

K

a

ā

Figure 2: The CSGA for our reduction from MEMBERSHIP to qual-
itative LTL model checking in MDPs. Edges without probability
labels mean they have probability 1.

The labelling function λ′ is the same as λ except that
λ(s∞) = ∅ and λ′(sι) = λ(sι)∪{p}. An illustration of the
construction ofM is shown in Figure 2.

The strategy profile is defined as ~σ = (σ1), where
σ1(s0) = a, i.e., action a is chosen with probability 1. Ob-
serve that a “yes” answer to the MEMBERSHIP query means
that ~σ ∈ NE(G), which implies that ϕ is not satisfied in K
with probability one. On the other hand, a “no” answer (i.e.,
~σ 6∈ NE(G)) implies that ϕ is satisfied in K with probability
one. Furthermore, the construction can be done in polyno-
mial time, concluding the proof.

3.2 E-NASH and A-NASH

For a given G and formula ϕ, E-NASH asks whether some
Nash equilibrium almost-surely satisfies ϕ. On the other
hand, A-NASH asks whether all Nash equilibria almost-
surely satisfy ϕ. Observe that A-NASH is closely related
to E-NASH, i.e., it can be framed as an instance of E-NASH,
with a small modification: rather than check whether the
formula AS(ϕ) is satisfied in some Nash equilbrium, we
check if NZ(¬ϕ) is satisfied. A Nash equilbirum that sat-
isfies NZ(¬ϕ) is a negative witness to A-NASH. Thus, we
first provide a decision procedure for solving E-NASH, and
later adapt the procedure to handle the A-NASH problem.

To solve the problem, we adapt the technique presented in
(Gutierrez et al. 2020). At this point, it is important to note
that while our approach is inspired by the one proposed in
(Gutierrez et al. 2020), the setting considered in this paper
differs in multiple ways. Firstly, here we consider stochas-
tic games and randomised strategies, while (Gutierrez et al.
2020) only considers deterministic games and pure strate-
gies. Secondly, we allow strategies to have infinite number
of states, instead of finite (albeit unbounded) states. Finally,
we use almost-sure winning conditions, which does not ap-
ply to deterministic games played with pure strategies.

To describe our approach, we begin with some def-
initions. Let G = (M, λ, (γi)i∈N) be a CSG whose



underlying arena is M = (N, (Aci)i∈N,St, s0, tr), and
let Aγi = 〈2AP, Qi, q

0
i , ρi, αi〉 be the DPW corre-

sponding to player i’s goal γi in G, and Aϕ =
〈2AP, Qϕ, q

0
ϕ, ρϕ, αϕ〉 to the formula ϕ. The CSPG GPAR

associated to G is GPAR = (M′, (α′i)i∈N, α′ϕ), whereM′ =

(N, (Aci)i∈N,St′, s0′, tr
′
) and (α′i)i∈N are as follows:

• St′ = St××i∈NQi×Qϕ and s0′ = (s0, q01 , . . . , q
0
n, q

0
ϕ);

• for each state (s, q1, . . . , qn, qϕ) ∈ St′ and ac-
tion profile ~a, we define tr′((s, q1, . . . , qn, qϕ),~a) =
(tr(s,~a), ρ1(q1, λ(s)), . . . , ρn(qn, λ(s)), ρϕ(qϕ, λ(s)));

• α′i(s, q1, . . . qn, qϕ) = αi(qi).

• α′ϕ(s, q1, . . . qn, qϕ) = αϕ(qϕ)

Observe that in the translation of G to its associated GPAR,
the set of actions for each player is unchanged. There-
fore, the set of strategies in both G and GPAR is the same,
since for every state s ∈ St and action profile ~a, it fol-
lows that ~a is available in s if and only if it is avail-
able in (s, q1, . . . , qn, qϕ) ∈ St′, for all (q1, . . . , qn, qϕ) ∈
×i∈NQi×Qϕ. This, in turn, means that, for a given strategy
profile ~σ, we obtain MCs C~σ and CPAR

~σ that correspond to G
and GPAR, respectively. Furthermore, since the construction
of tr′ preserves the probability distribution assignments in-
duced by tr, we have the following lemma.

Lemma 1. For a CSG G and its associated CSPG GPAR, it
holds that π′ ∈ Paths(CPAR

~σ , s0′) if and only if projs(π
′) ∈

Paths(C~σ, s0), where projs(π
′) is the s component of π′.

Now, suppose that ~σ |= AS(γi) in G; thus we have that
PrC~σ ({π ∈ Paths(C~σ, s0) : π |= γi}) = 1. Moreover, con-
sider the component projqi(π

′), i ∈ N. By the construction
of GPAR, it holds that projqi(π

′) is the run executed by the
DPW Aγi when λ(π) is read, and the parity of π′ with re-
spect to α′i corresponds to the one recognised byAγi . Thus,
by Lemma 1, it holds that PrCPAR

~σ
({π′ ∈ Paths(CPAR

~σ , s0′) :

projqi(π
′) |= α′i}) = 1, which implies that ~σ |= AS(αi) in

GPAR. Therefore, we obtain the following lemma.

Lemma 2. For a CSG G and its associated CSPG GPAR,
it is the case that for every strategy profile ~σ and player i,
~σ |= AS(γi) if and only if ~σ |= AS(αi).

With Lemma 2 in hand, we can show that the set of Nash
equilibria for any CSG G exactly corresponds to the set of
Nash equilibria of its associated CSPG GPAR. Formally, we
have the following proposition.

Proposition 1. Given a CSG G and its associated CSPG
GPAR, we have NE(G) = NE(GPAR).

Proof. We prove the proposition by double inclusion. As-
sume ~σ ∈ NE(G), and, by contradiction, ~σ 6∈ NE(GPAR).
Due to Lemma 2, it holds that WG(~σ) = WGPAR

(~σ). Then,
there is a player j ∈ LG(~σ) and a strategy σ′j such that
(~σ−j,, σ

′
j) |= AS(αj) in GPAR. This implies that σ′j is also

a beneficial deviation for j in G – a contradiction. On the
other hand, for every ~σ ∈ NE(GPAR), we can also reason in
a symmetric way to conclude that ~σ ∈ NE(G).

Proposition 1 allows us to compute Nash equilibria in
CSG G via its associated CSPG GPAR. To do this, we use
Nash equilibrium characterisation presented in (Gutierrez,
Harrenstein, and Wooldridge 2015a) which employs two
concepts: punishment and attributability. For the former,
we introduce the notion of punishing strategy.

Definition 2. For a game GPAR, player j, and state s, the
strategy profile ~σ−j is a punishing strategy for player j in s
if ((~σ−j , σ

′
j), s) |= ¬AS(αj), for every possible σ′j .

We say that a state s is punishing for j if there exists
a punishing strategy profile for j on s. Moreover, we de-
note by Punj(GPAR) the set of punishing states for player
j in GPAR. To compute Punj(GPAR), we solve the two-
player parity coalition game GA,αjPAR where A = N \ {j}. Let
WinA(GA,αjPAR ) be the set of winning states of coalition player
A in GA,αjPAR . Then the set WinA(GA,αjPAR ), corresponds exactly
to Punj(GPAR). A pair (s,~a) ∈ St× ~Ac is punishing-secure
for player j, if spt(tr(s, (~a−j , a′j))) ⊆ Punj(GPAR) for ev-
ery action a′j . We can then extend the notion of punishing-
secure pairs just defined to MCs as follows.

Definition 3. Given a CSPG GPAR and strategy profile ~σ,
the associated MC C~σ = (S, sι, tr

′, λ) is punishing-secure
for j ∈ LGPAR(~σ) if for every s, s′ ∈ S and every associated
~a ∈ ~Ac such that tr′(s, s′) > 0, (s,~a) is punishing-secure.

Now, with those definitions in place, we can characterise
Nash equilibria in CSPGs as follows.

Proposition 2. Let C~σ be the associated MC of a given
CSPG GPAR and strategy profile ~σ. It holds that ~σ ∈
NE(GPAR) if and only if for every player j ∈ LGPAR(~σ),
C~σ is punishing-secure for j.

Proof. From left to right, suppose ~σ ∈ NE(GPAR), and
assume for a contradiction that C~σ = (S, sι, tr

′, λ) is not
punishing-secure for some j ∈ LGPAR

(~σ). This means that
there is a state s ∈ S and action a′j ∈ Acj such that there
exists s′ ∈ spt(tr(s, (~a−j , a

′
j))) where s′ 6∈ Punj(GPAR).

This, in turn, means that there exists a (deviating) strat-
egy of player j such that there is non-zero probability of
player j escaping the punishing area. By the determinacy of
two-player concurrent parity games with almost-sure win-
ning conditions (de Alfaro and Henzinger 2000), player j
can thus achieve its goal with probability 1. Since this is a
beneficial deviation for player j, then ~σ is not in the set of
Nash equilibria of GPAR – which is a contradiction.

From right to left, we first assume the existence of some
C~σ that is punishing-secure for every losing player j. Such
an MC can be generated by a (possibly infinite state) trans-
ducer T . Moreover, for every losing player j and every state
s ∈ S of C~σ , there is a punishing strategy for j. Combin-
ing T with such punishing strategies, we obtain a strategy
profile ~σ that follows T , until a losing player j deviates. At
this point, the concept of attributability is required, since to
be able to punish, the coalition N \ {j} needs to know who
should be punished once a deviation happens. In order to
do this, the players must be able to remember the history
of play from the beginning of the game up until the point



at which a deviation happens. Notice that in general this
requires infinite memory. In such a case, ~σ would start pun-
ishing player j. Therefore, there is no beneficial deviation
for player j, and strategy profile ~σ is a Nash equilibrium of
the game.

Proposition 2 characterises Nash equilibria through the
concept of a punishing region, i.e., a region where, for a
given set of losing players L, each player j ∈ L can be pun-
ished. This region, denoted as G−LPAR, is the game resulting
from GPAR after the removal of the states that are not pun-
ishing for some j ∈ L, and the edges (s,~a) that are not
punishing-secure for some j ∈ L. We next observe that
a positive answer for Algorithm 2 corresponds to the exis-
tence of Nash equilibrium in G that satisfies ϕ with proba-
bility one, and prove that it is optimal.

Theorem 2. E-NASH and A-NASH are 2EXPTIME-
complete.

Proof. Algorithm 2 runs in doubly exponential time. The
underlying structure M′ of GPAR is doubly exponential in
the size of the LTL goals of G and formula ϕ, but the pri-
ority functions sets (αi)i∈N and αϕ are only singly expo-
nential (Piterman 2006). Computing Punj(GPAR) is poly-
nomial in the size ofM′ and exponential time in the size of
priority functions set (de Alfaro and Henzinger 2000). Line
6 in the algorithm corresponds to checking the realisabil-
ity problem for a qualitative parity logic formula containing
conjunctions of almost-sure atoms over the MDP K−L re-
sulting from G−LPAR when all players are as one, which can
be solved in polynomial time (Berthon, Guha, and Raskin
2020). The formula expresses that the objective αϕ (repre-
senting ϕ) is satisfied with probability 1, and each winning
player i (that cannot be punished inM−L) achieves its goal
with probability 1. The overall complexity of the algorithm
is thus in 2EXPTIME.

Now that we have a procedure to solve E-NASH, we can
adapt it to solve A-NASH. The adaptation is straightforward,
and goes as follows. First, when building GPAR from G,
instead of DPW Aϕ, we use A¬ϕ, i.e., a DPW built from
¬ϕ. Thus, in Algorithm 2, the formula in line 6 is replaced
by NZ(α¬ϕ) ∧

∧
i∈W AS(αi) and the positive and negative

answers in lines 7 and 8 respectively are swapped. Thus we
also have a 2EXPTIME algorithm for A-NASH.

For hardness, we reduce from qualitative LTL model
checking over MDPs. Given an MDP K with a labelling
function λ and formulaϕ, then solving the E-NASH problem
with input given by the one-player game G = (K, (>), λ)
and formula is equivalent to LTL model checking over the
MDP. This fact, and the duality between A-NASH and E-
NASH concludes the proof.

We now turn our attention to the cooperative setting, in
which equilibria are instead characterised by the core.

4 Cooperative Rational Verification
Nash equilibrium is a non-cooperative solution concept: it
assumes that players must act in isolation, without the possi-
bility of forming binding agreements to cooperate. In many

Algorithm 2 E-NASH

input: G, ϕ
1: build GPAR from G
2: for W ⊆ N do
3: for j ∈ L = N \W do
4: compute Punj(GPAR)

5: build G−LPAR and obtain K−L
6: if K−L |= AS(αϕ) ∧

∧
i∈W AS(αi) then

7: return “yes”
8: return “no”

settings, however, binding agreements are possible, and for
these it is appropriate to consider cooperative solution con-
cepts, of which the core is the most prominent. While Nash
equilibrium considers strategy profiles that are stable against
individual deviations, the core considers possible beneficial
deviations by groups of players (coalitions).

We follow the definition of core from (Gutierrez, Kraus,
and Wooldridge 2019). We first define the notion of a devia-
tion and a beneficial deviation. A deviation is a joint strategy
~σA for the coalition A ⊆ N, with A 6= ∅. For a strat-
egy profile ~σ, we say ~σ′A is a beneficial deviation from ~σ if
A ⊆ L(~σ) and for all ~σ′−A, we have A ⊆ W ((~σ′A, ~σ

′
−A)).

The core of a game G, denoted core(G), is then defined to be
the set of strategy profiles that admit no beneficial deviation.

Given the above definitions, we can introduce the key de-
cision problems relating to rational verification and the core.

E-CORE:
Given: Game G, LTL formula ϕ.
Question: Is it the case that

∃~σ ∈ core(G). ~σ |= AS(ϕ)?

A-CORE:
Given: Game G, LTL formula ϕ.
Question: Is it the case that

∀~σ ∈ core(G). ~σ |= AS(ϕ)?

Example 2. Recall the game in Figure 1. As we saw in
Example 1, the set of strategy profiles ~σ in which player
S/R chooses action iS/iR with probability one in any s ∈
{s0, . . . , sn−1} is a Nash equilibrium, because unilateral
deviations cannot improve the situation. However, this strat-
egy profile is not in the core, because there is a cooperative
beneficial deviation to the strategy ~σ in which player S/R
chooses action cS/cR with probability strictly greater than
zero in every state s ∈ {s0, . . . , sn−1}. This means that,
while the A-NASH query with the property ϕ ≡ Fψ returns
“no”, the A-CORE query with the same property returns
“yes”, since every strategy profile in the core satisfies ϕ with
probability one – in general they are always Pareto-optimal.

Alongside E-CORE and A-CORE, we will also often be
interested in the question of whether a particular alternative
strategy ~σ′A represents a beneficial deviation from ~σ for a
coalition A of players. This question, along with a version
of MEMBERSHIP for cooperative games, forms the final two
decision problems we investigate in this work.



CORE MEMBERSHIP:
Given: Game G, strategy profile ~σ.
Question: Is it the case that ~σ ∈ core(G)?

BENEFICIAL DEVIATION:
Given: Game G, strategy profile ~σ, deviation ~σ′A.
Question: Is ~σ′A a beneficial deviation from ~σ in G?

As noted above, the core can be viewed as the set of strat-
egy profiles from which no coalition (as opposed to player
in the case of NE) has a beneficial deviation. Our com-
plexity results for this cooperative solution concept follow
a similar high-level line of reasoning as taken in previous
work in the non-stochastic setting (Gutierrez, Kraus, and
Wooldridge 2019). However, as it will be seen next, the
“inner workings” to obtain the main complexity results rely
on very different techniques needed to be able to account for
the various probabilistic features in the game.

4.1 E-CORE and A-CORE
We begin by noting that the ability of a coalition A to
achieve an LTL goal ψ can be interpreted as its possession
of a winning strategy in the two-player coalition game GA,ψ ,
as defined in the previous section. We say that such a game
is winnable if player 1 has a strategy for achieving ψ. Using
these concepts, we restate the following result, with some
adaptations for our stochastic setting.
Lemma 3 ((Gutierrez, Kraus, and Wooldridge 2019)). Let
G = (M, λ, (γi)i∈N) be a CSG whose underlying arena is
M = (N, (Aci)i∈N,St, s0, tr) and let ϕ be an LTL formula.
Then G and ϕ satisfy E-CORE if and only if there existsW ⊆
N such that

• There exists some ~σ such that ~σ |= χW
• For all L ⊆ N \W , GL,ψL is not winnable

where χW = AS(ϕ) ∧
∧
i∈W AS(γi) ∧

∧
i∈N\W ¬AS(γi)

and ψL =
∧
i∈L AS(γi).

This result leads us to the procedure shown in Algorithm
3 for determining whether some game G and LTL formula ϕ
satisfy E-CORE. Moreover, due to the duality between AS
and NZ winning conditions we may express the A-CORE
problem for a game G and formula ϕ as the negation of
the E-CORE problem for G where the conjunct AS(ϕ) is re-
placed by ¬AS(ϕ) ≡ NZ(¬ϕ). We thus have the following
complexity results.
Theorem 3. E-CORE and A-CORE are 2EXPTIME-
complete.

Proof. The loop in line 1 and the check in line 4 (for each
A ⊆ N ) in Algorithm 3 are executed 2|N| times each.
Next, observe that we may also write χW as AS(ϕ) ∧∧
i∈W AS(γi)∧

∧
i∈N\W NZ(¬γi), a conjunction of AS and

NZ conditions. Thus, by expressing ϕ, γi for i ∈ W , and
¬γi for i ∈ N \ W as DPWs and constructing the game
GPAR, we may perform this model checking problem in time
polynomial in the size of GPAR using qualitative parity logic
(Berthon, Guha, and Raskin 2020). As a DPW formed from
an LTL formula ψ has states and labels doubly and singly
exponential in the size of ψ respectively (Piterman 2006),

Algorithm 3 E-CORE

input: G, ϕ
1: for A ⊆ N do
2: check if ∃~σ s.t. ~σ |= χA, written WA

3: check that GA,ψA is not winnable, written LA
4: if ∃A ⊆ N s.t. WA and LB ∀B ⊆ N \A then
5: return “yes”
6: return “no”

then we see that GPAR has size doubly exponential in the
original input and hence that the model checking step in the
algorithm can be solved in 2EXPTIME.

For line 3 we begin by noting that ~σ |=
∧
i∈A AS(γi)

if and only if ~σ |= AS(
∧
i∈A γi). Let us define ψ∧A =

AS(
∧
i∈A γi). Thus, we instead form the two-player parity

coalition game GA,ψ
∧
A

PAR . As |ψ∧A| is linear in |γ1|, . . . , |γn|,
then the number of states in GA,ψ

∧
A

PAR is doubly exponential in
the size of the original input, and the number of pairs in the
parity accepting condition of GA,ψ

∧
A

PAR is singly exponential in
the size of the original input. Whether player 1 has a win-
ning strategy in this product game can be checked in time
polynomial in the former and singly exponential in the latter
for AS-winning conditions (de Alfaro and Henzinger 2000),
meaning this step remains in 2EXPTIME as well.

Thus, Algorithm 3 above can be seen to run in
2EXPTIME, providing an upper bound for E-CORE. To see
that this bound is tight, note that we may reduce (qualitative)
model checking of LTL over MDPs to E-CORE. Given an
MDP K with a labelling function λ and formula ϕ, we input
the one-player game G = (K, (>), λ) and ϕ to Algorithm 3,
which returns “yes” if and only if there is a strategy inK sat-
isfying ϕ almost-surely. As qualitative LTL model checking
over MDPs is in 2EXPTIME (Courcoubetis and Yannakakis
1995), and our construction is polynomial in the size of the
original input, this concludes the proof.

4.2 CORE MEMBERSHIP

For the problem of CORE MEMBERSHIP and BENEFICIAL
DEVIATION we assume, as in the non-cooperative setting,
that the given strategies are all finite memory. By taking
a product of the finite state transducers representing ~σ with
the game G then we may check CORE MEMBERSHIP by first
checking for every player i whether ~σ |= AS(γi), and then
checking whether any subset L ⊆ N \ W can deviate to
achieve the formula ψL =

∧
i∈L AS(γi). This procedure is

shown in full in Algorithm 4 and gives rise to the following
complexity result.

Theorem 4. CORE MEMBERSHIP is 2EXPTIME-complete.

Proof. The first step (line 4) of Algorithm 4 is equivalent
to performing qualitative LTL model checking on the MC
C~σ , which can be done in PSPACE (Courcoubetis and Yan-
nakakis 1995). The second step (line 4) can be done in
2EXPTIME, as noted above, and thus we have that CORE
MEMBERSHIP is also in 2EXPTIME. As a lower bound we



Algorithm 4 CORE MEMBERSHIP

input: G, ~σ
1: for i ∈ N do
2: check if ~σ |= AS(γi), written Wi

3: for L ⊆ N \ {i : Wi = >} do
4: if GL,ψL is winnable then
5: return “no”
6: return “yes”

note that the problem of CORE MEMBERSHIP is the same
as the problem of MEMBERSHIP when |N | = 1, and so we
may use exactly the same reduction given in the proof of
Theorem 1 with the construction illustrated in Figure 2.

4.3 BENEFICIAL DEVIATION
We now study BENEFICIAL DEVIATION, solved using Al-
gorithm 5, and note that although the complexities for the
other problems in cooperative rational verification are the
same as in the deterministic setting, BENEFICIAL DEVIA-
TION is only in PSPACE for deterministic games, and hence
the stochastic setting is significantly more difficult.
Theorem 5. BENEFICIAL DEVIATION is 2EXPTIME-
complete.

Proof. We begin, in Algorithm 5, by checking whether ~σ |=∧
i∈A ¬AS(γi), or equivalently whether ~σ |= NZ(¬γi) for

each player i ∈ A, as otherwise there is no beneficial devi-
ation for the coalition A and we are done (line 3). This is
again a simple qualitative LTL model checking problem on
C~σ , which is in PSPACE, as remarked in the previous proof.
The second condition we check is whether, when the coali-
tion A is instead playing ~σ′A, there exists a way for the re-
maining players N \ A to achieve

∨
i∈A ¬AS(γi). This can

be done by taking the product of the original game G and
the finite state transducers representing ~σ′A, and then model
checking the resulting MDP K−A, in which N \A is viewed
as a single agent, with respect to NZ(¬γi) (line 5), which is
in 2EXPTIME and hence so is BENEFICIAL DEVIATION.

To see that this bound is tight note that we can reduce
qualitative LTL model checking on MDPs to BENEFICIAL
DEVIATION. Given an MDP K and LTL formula ϕ, let Cϕ
be a minimal (deterministic) MC satisfying ϕ and similarly
for C¬ϕ. We then form the CSGA M shown in Figure 3,
where player 1 has control over all the actions in K, and
the resulting game G = (M, (Xϕ,¬Xϕ), λ) where λ is
the combination of the labelling functions for K, Cϕ, and
C¬ϕ with λ(s0) = ∅. Let ~σ be such that σ1(s0) = a and
σ2(s0) = b, and for A = {2} let ~σ′A be the same as ~σ except
for having σ2(s0) = b̄.

It can be seen immediately both that G, ~σ, and ~σ′A are of
size polynomial in the original input K and ϕ, and that ~σ′A
is a beneficial deviation from ~σ if and only if it is not the
case that there exists a strategy in K satisfying AS(ϕ); if
there was then player 1 could switch to such a strategy and
play ā in s0 in order to ensure that the coalition {2} does not
achieve their goal.

Algorithm 5 BENEFICIAL DEVIATION

input: G, ~σ, ~σ′A
1: build K−A from G and ~σ′A
2: for i ∈ A do
3: if ~σ |= AS(γi) then
4: return “no”
5: if K−A |= NZ(¬γi) then
6: return “no”
7: return “yes”

s0

∅

Cϕ

C¬ϕ

K

a, b

a, b̄

ā, b
ā, b̄

Figure 3: The CSGA for our reduction from BENEFICIAL DEVIA-
TION to qualitative LTL model checking in MDPs. Edges without
probability labels mean they have probability 1.

5 Discussion and Related Work
Our results account for cooperative and non-cooperative set-
tings, and required the development of new techniques with
respect to previous work. In particular, most verification
techniques for deterministic systems, many of which are
used in the context of rational verification, no longer apply
when probabilistic behaviour is allowed. We then conclude
with a more detailed comparison and analysis against previ-
ous work on rational verification and probabilistic systems.

Special Cases Our results pertain to general-sum mul-
tiplayer games with perfect information and memoryful
strategies. A few observations can be made as a result.
The proofs for hardness of most of our results show that
the problems studied here remain in 2EXPTIME even in the
single-player case. The same is true if we consider zero-
sum games, which are frequently used in formal verifica-
tion in the two-player setting. This shows, in turn, that the
2EXPTIME results hold regardless of the number of players
(as long is it is more than one) or how antagonistic they are.

A less obvious situation is when strategies are restricted
or when the game has multiple players, but each control their
own set of states – a multiplayer turn-based game. Concrete
results in these cases are yet to be obtained (for instance, for
memoryless or finite-memory strategies), and therefore have
been left as directions for future work.

Another special case is where players possess simpler
temporal logic goals. It is known that two-player games with
goals expressed using various kinds of LTL fragments are
2EXPTIME-complete even for deterministic systems (Alur,
Torre, and Madhusudan 2003). However, if only one player
is allowed in the game, the problem can have a significantly
lower complexity (NP or EXPTIME) in case of qualitative
probabilistic model checking (Kini and Viswanathan 2017).



A much different complexity landscape is found when the
quantitative probabilistic setting is considered, with simi-
lar decision problems having much higher complexity in
the quantitative setting, and requiring, yet again, a different
toolset of verification techniques.

On Rational Verification Most relevant related work on
rational verification has focused on deterministic systems,
leaving all reasoning about stochastic systems largely over-
looked. One important question, not discussed in the present
paper, is the problem of whether a game has at least one
equilibrium: the NON-EMPTINESS problem in rational ver-
ification. This problem always has a positive answer in the
cooperative case – see (Gutierrez, Kraus, and Wooldridge
2019), the argument therein also extends to the stochastic
setting considered in the current work – and in the deter-
ministic, non-cooperative case is solvable in 2EXPTIME
when considering arbitrary LTL goals and strategies. In the
stochastic, non-cooperative setting, however, it is an open
problem and known results on game theory and games with
probabilistic behaviour do not seem to provide an answer.

Two important types of games in the rational verification
literature for multi-agent systems are the case where play-
ers control Boolean variables, as in an iterated version of
a Boolean game (Gutierrez, Harrenstein, and Wooldridge
2015b), and the case where systems are succinctly repre-
sented using a guarded command-like language for multi-
agent system specifications (Alur and Henzinger 1999).
While all of these problems are also in 2EXPTIME in the
non-stochastic setting, they require considerably different
proof techniques for their solutions, typically resorting to the
use of logics for strategic reasoning (Mogavero et al. 2014),
automata (Fisman, Kupferman, and Lustig 2010), or reduc-
tions to other game representations (Gutierrez et al. 2020;
Gutierrez et al. 2018; Bouyer et al. 2015). In the probabilis-
tic setting considered here, several new constructions and
proof techniques were required, including, e.g., the need for
infinite-memory strategies to achieve optimal behaviour.

Verification of Probabilistic Systems Probabilistic sys-
tems have been studied extensively, but mostly without a
focus on rational behaviour as considered in this work. In-
stead, the traditional verification approaches to probabilistic
systems have considered zero-sum games, ω-regular goals,
and many types of winning, of which almost-sure is just one
of many possibilities. A comprehensive survey of main re-
sults in this area can be found in (Chatterjee and Henzinger
2012). Of the many studies on the analysis and verification
of probabilistic systems, the work in (Kwiatkowska et al.
2020a; Kwiatkowska et al. 2019) is the closest to that pre-
sented here. In common with (Kwiatkowska et al. 2020a;
Kwiatkowska et al. 2019), we use CSGs as the underly-
ing model and focus on properties satisfied in equilibrium.
However, several aspects of our work are different. On one
hand, we model players’ preferences using LTL formulae,
allow infinite-horizon plays unrestrictedly, provide optimal
complexity results for key decision problems, and look at
different game-theoretic solution concepts; in fact, no other
paper investigates the core for CSGs. On the other hand, we
do not consider probabilistic reasoning in the quantitative

setting, and do not have a practical implementation.

Practical Implementations So far, only PRISM-games
can be used to verify the satisfaction of properties in equi-
librium in CSGs, and until recently, only games without
concurrency were supported (Kwiatkowska et al. 2020b).
The current PRISM-games implementation supports concur-
rency, but verification is restricted to games with a finite
horizon, while the procedures we have developed consider
plays with an infinite horizon and strategies having access
to infinite memory. In addition, PRISM-games considers a
non-cooperative solution concept different from Nash equi-
librium and does not support cooperative solution concepts.

The closest implementation to the work in this paper, but
in a non-probabilistic setting, is EVE (Gutierrez et al. 2018;
Gutierrez et al. 2020), one of the most efficient software ver-
ification tools for the analysis and verification of temporal
logic properties of multi-agent systems. An avenue for fu-
ture work on the practical side is to extend the functional-
ities of EVE to account for the more complex probabilistic
framework we have studied here, both for cooperative and
for non-cooperative games. MCMAS (Lomuscio, Qu, and
Raimondi 2017), a verification tool for multi-agent systems,
also provides some support to model check logics for strate-
gic reasoning, some of which can express both Nash equi-
librium and the core; however, at the time of writing, an im-
plementation that can account for the kind of probabilistic
systems we have considered here is not available.

Future Work As pointed out before, a few problems seem
to lead to interesting avenues for future research. On the
practical side, just discussed, the immediate work to do
would be to implement the algorithms herein proposed –
an powerful way to extend the current capabilities of, say,
EVE’s verification engine which at present does not support
any kind of probabilistic reasoning. On the other hand, on
the theory side, we would like to understand better two spe-
cific problems: firstly, NON-EMPTINESS in the stochastic,
non-cooperative setting, and secondly, whether our results
can be extended to the probabilistic quantitative setting.
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